organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui-Min Zhang,^a Ya-Ping Lü,^a Bing Tu,^a Zhi-Min Jin^a* and Zhi-Yong Wu^b

^aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^bMarine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.005 Å R factor = 0.042 wR factor = 0.113 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cinchonidinium bis(4-methylbenzenesulfonate) monohydrate

In the title salt, $C_{19}H_{24}N_2O^{2+}\cdot 2C_7H_7SO_3^{-}\cdot H_2O$, the ions and the water molecule are held together by $O-H\cdot\cdot\cdot O$, $N-H\cdot\cdot\cdot O$ and $C-H\cdot\cdot\cdot O$ hydrogen bonds, forming hydrogen-bonded layers; there are no hydrogen bonds between layers.

Received 6 July 2006 Accepted 7 July 2006

Comment

Various salts of cinchonidine have been reported previously, e.g. cinchonidinium pyruvate oxime (Borszeky et al., 1996), cinchonidinium (S)-mandelate (Gjerløv & Larsen, 1997), bis(cinchonidinium) L-tartrate dihydrate (Zhang et al., 2003), cinchonidinium (R,R)-tartrate monohydrate (Ryttersgaard & Larsen, 2003), cinchonidinium tris(tetrachlorobenzenediolato)phosphate (Favarger et al., 2004) and cinchonidinium bis(perchlorate) (Zhang et al., 2006). As a continuation of our research, we report here the title salt, (I).

As shown in Fig. 1, the 4-methylbenzenesulfonate anion containing atom S1, the cinchonidinium cation and the water molecule are held together by N-H···O, O-H···O and C-H···O hydrogen bonds (Table 2) in an $R_3^3(9)$ ring (Etter, 1990).

The asymmetric unit of (I), showing the atom labelling and 40% probability displacement ellipsoids. Dashed lines indicate hydrogen

All rights reserved bonds.

© 2006 International Union of Crystallography

Further N-H···O, O-H···O and some weak C-H···O hydrogen bonds (Table 2) form a layer parallel to the (001) plane (Fig. 2). The whole structure is generated though translation of the layer; there are no hydrogen bonds between layers.

Experimental

Cinchonidine and 4-methylbenzenesulfonic acid in a 1:3 molar ratio were mixed and dissolved with stirring in sufficient water by heating to 373 K, at which point a clear solution resulted. The solution was cooled to room temperature and the colourless crystals were collected after 30 d.

Crystal data

 $C_{19}H_{24}N_2O^{2+}.2C_7H_7SO_3^{-}.H_2O$ $M_r = 656.81$ Triclinic, P1 a = 6.565 (3) Å b = 9.599 (4) Å c = 12.748 (5) Å $\alpha = 85.25$ (3)° $\beta = 84.08$ (3)° $\gamma = 82.71$ (3)°

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (XSCANS; Siemens, 1994) $T_{min} = 0.932, T_{max} = 0.994$ (expected range = 0.884–0.943) 6402 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.113$ S = 1.056198 reflections 425 parameters H atoms treated by a mixture of independent and constrained refinement

6198 independent reflections
5316 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.000$
$\theta_{\rm max} = 26.0^{\circ}$
3 standard reflections
every 97 reflections
intensity decay: 4.9%

V = 790.6 (6) Å³

 $D_r = 1.380 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, colourless

0.54 \times 0.42 \times 0.26 mm

 $\mu = 0.22 \text{ mm}^{-1}$

T = 291 (2) K

Z = 1

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.066P)^2 \\ &+ 0.0459P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.26 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.39 \text{ e } \text{ Å}^{-3} \\ \text{Extinction correction: } SHELXL97 \\ \text{Extinction coefficient: } 0.016 (3) \\ \text{Absolute structure: Flack (1983),} \\ 2176 \text{ Friedel pairs} \\ \text{Flack parameter: } -0.03 (6) \end{split}$$

Tal	ble	1
-----	-----	---

Selected	geometric	parameters	(A,	°).
----------	-----------	------------	-----	-----

S1-O2	1.438 (3)	C1-C2	1.395 (4)
S1-O3	1.439 (2)	C5-C6	1.413 (4)
S1-O4	1.460 (3)	C10-C11	1.540 (4)
S1-C25	1.775 (3)	C14-C18	1.502 (5)
S2-O5	1.462 (2)	C18-C19	1.293 (6)
O1-C10	1.413 (4)	C20-C25	1.382 (4)
N2-C11	1.509 (4)	C21-C22	1.379 (6)
02 61 02	114 45 (15)	01 010 07	111.1 (2)
02-51-03	114.43(13) 106.20(15)	C_{1}^{-} C_{10}^{-} C_{11}^{-}	111.1(2) 100.0(2)
02 - 31 - 025	106.39 (13)	C/-C10-C11	109.0(2)
O7 - S2 - O6	116.4 (2)	C13-C12-C11	109.0 (2)
C9-N1-C1	123.2 (3)	C19-C18-C14	124.7 (5)
C15-N2-C11	107.6 (2)	C21-C22-C23	117.8 (3)
C2-C3-C4	120.5 (3)	C24-C25-C20	119.5 (3)

Figure 2

A packing diagram of (I), viewed along the a axis. Hydrogen bonds are indicated by dashed lines.

Table 2

Hydrogen-bond	geometry ((A, °).
---------------	------------	-------	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1N···O6 ⁱ	0.98 (6)	1.86 (6)	2.749 (4)	150 (5)
$N2 - H2N \cdot \cdot \cdot O8$	0.99 (4)	1.75 (4)	2.718 (3)	164 (4)
$O1-H1O\cdots O5^{ii}$	0.82	1.96	2.754 (3)	163
$O8-H0A\cdots O4$	0.82(1)	1.91 (1)	2.731 (4)	179 (5)
$O8-H0B\cdots O5^{iii}$	0.83(1)	1.98 (1)	2.806 (3)	172 (4)
C8−H8···O3 ^{iv}	0.93	2.46	3.205 (4)	138
C9−H9···O4 ^{iv}	0.93	2.34	3.247 (4)	164
$C11 - H11 \cdots O3^{v}$	0.98	2.51	3.320 (4)	140
$C17 - H17A \cdots O1$	0.97	2.39	3.026 (4)	123
$C17 - H17B \cdots O2$	0.97	2.50	3.441 (3)	164

Symmetry codes: (i) x + 1, y + 1, z - 1; (ii) x + 1, y, z - 1; (iii) x, y, z - 1; (iv) x + 1, y + 1, z; (v) x, y + 1, z.

H atoms of the water molecule and those attached to N atoms were located in difference Fourier maps. Water H atoms were refined with O-H and H···H distances restrained to 0.82 (1) and 1.34 (1) Å, respectively, while the H atoms of the NH group were refined freely. All other H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (aromatic and alkene), 0.96 (methyl), 0.97 (methylene), 0.98 (methine) and 0.82 Å (hydroxyl), with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Borszeky, K., Mallat, T., Aeschiman, R., Schweizer, W. B. & Baiker, A. (1996). J. Catal. 161, 451–458.

Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

Favarger, F., Goujion-Ginglinger, C., Monchand, D. & Lacour, J. (2004). J. Org. Chem. 69, 8521–8524.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Gjerløv, A. & Larsen, S. (1997). Acta Cryst. B53, 708-718.

Ryttersgaard, C. & Larsen, S. (2003). Acta Cryst. E59, o1715-o1716.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Zhang, H., Lin, Z.-Y., Zhou, Z.-H. & Ng, S. W. (2003). Acta Cryst. E59, o183– o185.
- Zhang, H.-M., Tu, B., Jin, Z.-M., Wu, Z.-Y. & Hu, M.-L. (2006). *Acta Cryst.* E62, 02614–02616.